Thu03152018

Last update09:47:31 AM GMT

06.05.10 14:22

Нанотехнологии в медицине, современное состояние.

Написал  Medforce
Оценить
(4 голоса)
`

Медицина – очень консервативная область. Ведется огромное количество исследований по всему миру в области медицины, но требуется очень много времени, чтобы они были внедрены в жизнь. В среднем, между созданием нового лекарства и началом его применения в практической медицине проходит около 5 - 10 лет. Поэтому лекарства на основе нанотехнологий и существуют пока только в виде экспериментальных образцов или перспективных проектов. Тем не менее, возможности нано теха в медицине колоссальны.

Нанотехнологии работают с частицами в пределах до 100 нм – с размерами в несколько раз только больше биологических макромолекул, таких как белки или нуклеиновые кислоты. При этом нанообъекты могут быть изготовлены из совершенно разных материалов – будь то золото,  молекулы углерода или же белковые макромолекулы.

Соответственно, используемый материал и технологии получения будут определять свойства наночастиц. Это позволяет добиться практически любых характеристик, которые можно использовать тем или иным образом во многих областях медицины – от зашивания операционных надрезов до диагностики инфекционных заболеваний и лечения опухолей.

Одним из наиболее привлекательных вариантов применения нано – это создание сенсоров – устройств, способных реагировать на изменения среды, появление частиц какого-то определенного вещества, изменение концентрации веществ. В настоящий момент существует множество проектов по созданию сверхчувствительных сенсоров, работающих за счет наночастиц.

Наночастицы соотносятся с молекулами примерно как ваша рука с бусиной или с мячиком для пинг-понга, поэтому наночастицы можно использовать, чтобы «ловить» отдельные молекулы. Это обьясняет особую чувствительность нано-сенсоров, способность их обнаруживать вещества даже в малейших концентрациях. Особенно ценно это качество для диагностики заболеваний, что уже нашло применение в перспективных разработках.

Так, например, лаборатория в израильском институте Технион в Хайфе создала прибор, способный по содержанию в выдохе пациента определенных молекул определить наличие рака легких. В качестве чувствительной части прибора используются девять наносенсоров. Они представляют собой золотые наночастицы, на которых закреплены органические соединения, реагирующие на конкретные молекулы, находящиеся в воздухе, который выдохнул пациент. Через 30 секунд уже готов ответ, при этом не требуется делать болезненных и сложных операций (таких как биопсия), без которых невозможна современная диагностика. Тот же коллектив ученых, возглавляемый доктором Хоссеном Хаиком, разрабатывают аналогичный прибор для обнаружения рака почек.

Другим немаловажным направлением исследований является создание новых лекарственных форм.  Лекарственная форма – это то, в каком виде лекарственное средство вводится в организм, например раствор для инъекций или суспензии.  Существует множество разработок, использующих частицы из золота или других металлов в качестве «скорлупы», капсулы для лекарственных веществ. Размеры этих частиц позволяют им проникать через поры клеток и каналы клеточной стенки, доставляя таким образом лекарственное средство прямо к месту действия. Это способно уберечь лекарственные вещества от переработки ферментами организма, связывания с белками плазмы, что увеличивает количество неизмененного вещества, дошедшего до места действия. Проще говоря, увеличивает эффективность использования лекарств.

Существует мнение, что с помощью нанотехнологий медицина наконец найдет эффективное решение в борьбе с раком. Как известно, злокачественные опухоли образуются из-за сбоя в механизме клеточного деления, происходящего скорее всего происходит на молекулярном уровне. Соответственно, нанотехнологии, работающие как раз на уровне этих молекул, могут дать инструменты для устранения «поломок» этого механизма. На данный момент не до конца ясен механизм этого сбоя, соответственно пока невозможно создать эффективный способ его устранения.

Тем не менее, нанотехнологии уже нашли применение в борьбе со злокачественными опухолями. Существует нехирургический метод удаления опухолей, основанный на гипертермии. Принцип его состоит в том, что углеродные нанотрубки, вводимые в опухоль, проникают в её клетки и, под воздействием излучения определенной частоты, начинают выделять теплоту, повышать температуру опухоли, вызывая, таким образом, её отмирание. При этом, весьма незначительна вероятность того, что останутся живые злокачественные клетки и что опухоль начнет расти снова.

На похожем принципе работает техника, разработанная доктором Еленой Рожковой из Argonne's NanoBio Interfaces group, частицы с диоксидом титана, прикрепленные к антителам, способным обнаруживать клетки мультиформной глиобластомы и соединяться с ними. Под воздействием света титан создает электрический заряд, который передается на молекулу кислорода, которая переходит в активную форму, начинает разрушать клеточную мембрану и запускает механизм апоптоза. Тем не менее, эти техники требуют хирургического вмешательства для доставки источника света к опухоли.

Ведущим направлением в нанотехнологических исследованиях на данный момент все-таки является синтетическое направление, связанное с технологиями получения новых материалов. Это направление нашло применение и в медицине. На основе нанотехнологий были получены новые шовные материалы, например, полилактатное полотно, способное без клея прикрепляться к краям ранения или хирургического надреза, при этом закрывающее его от внешней среды, препятствуя заражению и улучшая заживление. При этом, данный материал способен разлагаться ферментами организма со временем. Это свойство используется при создании полилактатных шовных нитей, которые не требуется снимать. Что облегчает работу хирургу и жизнь пациенту.

Совершенно особенную разработку создали американские ученые. На основе биоматериалов с помощью нанотехнологий был создан гель, при введении в поврежденный участок головного мозга вызывающий восстановление тканей в этом участке. При этом ткани имеют четкую структуру, соответствующую структуре неповрежденной мозговой ткани. Пока что эта разработка действует, опять же, только в опытных моделях на мышах, но в скором будущем она дойдет и до стадий клинических испытаний.

Серьезные повреждения головного мозга способны вызвать как необратимые изменения личности, так и серьезные сбои в физиологии человека вообще. Вплоть до состояния «растения». На данный момент не изобретено лекарство, способное восстанавливать нейроны и нервную ткань. Поэтому необходимость в подобном лекарстве существовала давно. Если этот гель пройдет клинические испытания и будет внедрен в практическую медицину, то самые серьезные повреждения головного мозга станут намного более легко излечимыми.

Перспективы нанотехнологий же намного шире того, где они уже нашли свое применение. В медицине же нанотехнологии могут найти самое широкое для себя применение. Большинство болезней являются следствием сбоев работы организма на молекулярном уровне – как уже было сказано выше, на том уровне, на котором работают нано-разработки. Возможности безграничны – от построения отдельных белков до сборки более сложных механизмов и конструирования искусственных систем, или же сборки тканей. Но главное, что могут дать нанотехнологии – это контроль над обьектами на клеточном и молекулярном уровнях, возможность манипулировать этими обьектами, а также использовать эти объекты в качестве деталей для более крупных структур.

Правда, пока что современная наука стоит только на уровне получения относительно простых наноматериалов и создания относительно простых нанообъектов. По сложности устройства нанообьекты пока что еще довольно просты: используется небольшое количество «деталей», нет каких-то сложных механизмов, способных делать какие-то более сложные операции - наука пока еще не способна создавать такие сложные устройства настолько маленьких размеров.

При этом, многие ждут от нанотехнологий очередного «промышленного переворота», какой в свое время произвели микро- или компьютерные технологии. Да, они способны решить некоторые наши остро наболевшие проблемы, но слишком много еще пока неясно в отношении нанотехнологий. Все еще не до конца ясно, насколько безвредны наноматериалы для человека и какие от них могут  быть побочные эффекты – проще говоря, какие ограничения существуют для их применения. Требуется еще очень много времени для усовершенствования существующих технологий до того уровня, чтобы можно было говорить о технической революции.

Изменено 06.05.10 14:31